The following code example is taken from the book
The C++ Standard Library - A Tutorial and Reference
by Nicolai M. Josuttis, Addison-Wesley, 1999
© CopyrightNicolai M. Josuttis 1999
// myalloc.hpp
#include <limits>
#include <iostream>
namespace MyLib {
template <class T> class MyAlloc {
public:
// type definitions
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// rebind allocator to type U
template <class U> struct rebind {
typedef MyAlloc<U> other;
};
// return address of values
pointer address (reference value) const {
return &value;
}
const_pointer address (const_reference value) const {
return &value;
}
/* constructors and destructor
* - nothing to do because the allocator has no state
*/
MyAlloc() throw() { }
MyAlloc(const MyAlloc&) throw() { }
~MyAlloc() throw() { }
template <class U> MyAlloc (const MyAlloc<U>&) throw() {}
// return maximum number of elements that can be allocated
size_type max_size () const throw() {
return std::numeric_limits<std::size_t>::max() / sizeof(T);
}
// allocate but don't initialize num elements of type T
pointer allocate (size_type num, const void* = 0) {
// print message and allocate memory with global new
std::cerr << "allocate " << num << " element(s)"
<< " of size " << sizeof(T) << std::endl;
pointer ret = (pointer)(::operator new(num*sizeof(T)));
std::cerr << " allocated at: " << (void*)ret << std::endl;
return ret;
}
// initialize elements of allocated storage p with value value
void construct (pointer p, const T& value) {
// initialize memory with placement new
new((void*)p)T(value);
}
// destroy elements of initialized storage p
void destroy (pointer p) {
// destroy objects by calling their destructor
p->~T();
}
// deallocate storage p of deleted elements
void deallocate (pointer p, size_type num) {
// print message and deallocate memory with global delete
std::cerr << "deallocate " << num << " element(s)"
<< " of size " << sizeof(T)
<< " at: " << (void*)p << std::endl;
::operator delete((void*)p);
}
};
// return that all specializations of this allocator are interchangeable
template <class T1, class T2>
bool operator== (const MyAlloc<T1>&, const MyAlloc<T2>&) throw() {
return true;
}
template <class T1, class T2>
bool operator!= (const MyAlloc<T1>&, const MyAlloc<T2>&) throw() {
return false;
}
}
// myalloc.cpp
#include <vector>
#include "myalloc.hpp"
int main()
{
// create a vector, using MyAlloc<> as allocator
std::vector<int,MyLib::MyAlloc<int> > v;
// insert elements
// - causes reallocations
v.push_back(42);
v.push_back(56);
v.push_back(11);
v.push_back(22);
v.push_back(33);
v.push_back(44);
}
'STUDY > C++' 카테고리의 다른 글
[ STL : User Define Allocator - Nicolai M. Josuttis ] (0) | 2014.08.07 |
---|---|
[C] Linked-List 링크리스트 구현 (연결리스트) 소스 (0) | 2013.08.20 |
C++ 상속 부모클래스 있을때 생성자 순서 (0) | 2013.08.20 |
const_cast static_cast reinterpret_cast dynamic_cast 형변환 (0) | 2013.08.19 |
[C++] Linked-List 링크리스트 구현 (연결리스트) 소스 (0) | 2013.04.18 |
[C++] Binary Search & Sequential Search 구현 (이원탐색 || 이진탐색 및 순차탐색) 소스 (0) | 2013.04.18 |
#include <stdio.h> #include <stdlib.h> struct Node { int data; Node* next; }; void isnert_node(Node* node, int input_data) { Node* newNode = (Node *)malloc(sizeof(Node)); newNode->data = input_data; if(node->next == NULL) newNode->next = NULL; else newNode->next = node->next; node->next = newNode; } void delete_node(Node* node, int delete_data) { Node* tmp = (Node* )malloc(sizeof(Node)); Node* tmp_prev = (Node*) malloc(sizeof(Node)); tmp = node; tmp_prev = node; if(tmp->next == NULL) { printf("no value "); return ; } while(1) { if(tmp->next == NULL) { printf("no search "); return; } tmp_prev = tmp; tmp = tmp->next; if(tmp->data == delete_data) { tmp_prev->next = tmp->next; free(tmp); return ; } } } void display_node(Node* node) { Node *tmp = node; printf("[start]"); while(tmp != NULL) { printf(" -> [%d]", tmp->data); tmp = tmp->next; } } int main() { Node* head = (Node* ) malloc(sizeof(Node)); head->data = 0; head->next = NULL; int in; char _input; while(1) { printf("[(i)nsert, (d)elete, (p)rint, (q)uit] : "); scanf("%c", &_input); getchar(); // 엔터 입력 if(_input == 'i') { printf("input number : "); scanf("%d", &in); getchar(); isnert_node(head, in); } else if(_input == 'd') { printf("delete number : "); scanf("%d", &in); getchar(); delete_node(head, in); } else if(_input == 'p') display_node(head->next); else if(_input == 'q') break; else printf("Invalid input.. "); printf(" "); } fflush(stdin); free(head); return 0; }
'STUDY > C++' 카테고리의 다른 글
[ STL : User Define Allocator - Nicolai M. Josuttis ] (0) | 2014.08.07 |
---|---|
[C] Linked-List 링크리스트 구현 (연결리스트) 소스 (0) | 2013.08.20 |
C++ 상속 부모클래스 있을때 생성자 순서 (0) | 2013.08.20 |
const_cast static_cast reinterpret_cast dynamic_cast 형변환 (0) | 2013.08.19 |
[C++] Linked-List 링크리스트 구현 (연결리스트) 소스 (0) | 2013.04.18 |
[C++] Binary Search & Sequential Search 구현 (이원탐색 || 이진탐색 및 순차탐색) 소스 (0) | 2013.04.18 |
#include <iostream> class A { public: A() { std::cout << "a create" << std::endl; } ~A() { std::cout << "a delete" << std::endl; } }; class B { public: B() { std::cout << "b create" << std::endl; } ~B() { std::cout << "b delete" << std::endl; } }; class C : public B { public: C() { std::cout << "c create" << std::endl; } ~C() { std::cout << "c delete" << std::endl; } }; int main() { B* a; a = new C(); delete a; return 0; }
'STUDY > C++' 카테고리의 다른 글
[ STL : User Define Allocator - Nicolai M. Josuttis ] (0) | 2014.08.07 |
---|---|
[C] Linked-List 링크리스트 구현 (연결리스트) 소스 (0) | 2013.08.20 |
C++ 상속 부모클래스 있을때 생성자 순서 (0) | 2013.08.20 |
const_cast static_cast reinterpret_cast dynamic_cast 형변환 (0) | 2013.08.19 |
[C++] Linked-List 링크리스트 구현 (연결리스트) 소스 (0) | 2013.04.18 |
[C++] Binary Search & Sequential Search 구현 (이원탐색 || 이진탐색 및 순차탐색) 소스 (0) | 2013.04.18 |